Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.428
Filtrar
1.
Biochem Biophys Res Commun ; 703: 149681, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382360

RESUMO

BACKGROUND: Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS: In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS: Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION: MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.


Assuntos
Doença da Altitude , Peroxidase , Edema Pulmonar , Animais , Camundongos , Altitude , Hipertensão Pulmonar , Hipóxia/complicações , Inflamação/complicações , Pulmão/irrigação sanguínea , Lesão Pulmonar/complicações , Camundongos Endogâmicos C57BL , Neutrófilos , Óxido Nítrico Sintase , Peroxidase/genética , Peroxidase/metabolismo , Edema Pulmonar/metabolismo
2.
Matrix Biol ; 125: 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000777

RESUMO

Basement membranes are thin strong sheets of extracellular matrix. They provide mechanical and biochemical support to epithelia, muscles, nerves, and blood vessels, among other tissues. The mechanical properties of basement membranes are conferred in part by Collagen IV (Col4), an abundant protein of basement membranes that forms an extensive two-dimensional network through head-to-head and tail-to-tail interactions. After the Col4 network is assembled into a basement membrane, it is crosslinked by the matrix-resident enzyme Peroxidasin to form a large covalent polymer. Peroxidasin and Col4 crosslinking are highly conserved throughout the animal kingdom, indicating they are important, but homozygous mutant mice have mild phenotypes. To explore the role of Peroxidasin, we analyzed mutants in Drosophila, including a new CRISPR-generated catalytic null, and found that homozygotes were mostly lethal with 13 % viable escapers. Mouse mutants also show semi-lethality, with Mendelian analysis demonstrating ∼50 % lethality and ∼50 % escapers. Despite the strong mutations, the homozygous fly and mouse escapers had low but detectable levels of Col4 crosslinking, indicating the existence of inefficient alternative crosslinking mechanisms, probably responsible for the viable escapers. Fly mutant phenotypes are consistent with decreased basement membrane stiffness. Interestingly, we found that even after basement membranes are assembled and crosslinked in wild-type animals, continuing Peroxidasin activity is required in adults to maintain tissue stiffness over time. These results suggest that Peroxidasin crosslinking may be more important than previously appreciated.


Assuntos
Peroxidase , Animais , Camundongos , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/genética
3.
World J Microbiol Biotechnol ; 39(12): 328, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792124

RESUMO

Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.


Assuntos
Halobacteriaceae , Triticum , Secas , Peroxidase/genética
4.
Basic Res Cardiol ; 118(1): 36, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656254

RESUMO

Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Peroxidase , Animais , Humanos , Camundongos , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Doxorrubicina/toxicidade , Inflamação , Peroxidase/genética
5.
Mol Plant Microbe Interact ; 36(11): 682-692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37486175

RESUMO

Oxidative burst, the rapid production of high levels of reactive oxygen species in response to external stimuli, is an early defense reaction against pathogens. The fungal elicitor chitosan causes an oxidative burst in the moss Physcomitrium patens (formerly Physcomitrella patens), mainly due to the peroxidase enzyme Prx34. To better understand the chitosan responses in P. patens, we conducted a screen of part of a P. patens mutant collection to isolate plants with less peroxidase activity than wild-type (WT) plants after chitosan treatment. We isolated a P. patens mutant that affected the gene encoding NAD(P)-binding Rossmann fold protein (hereafter, Rossmann fold protein). Three Rossmann fold protein-knockout (KO) plants (named Rossmann fold KO lines) were generated and used to assess extracellular peroxidase activity and expression of defense-responsive genes, including alternative oxidase, lipoxygenase (LOX), NADPH oxidase, and peroxidase (Prx34) in response to chitosan treatment. Extracellular (apoplastic) peroxidase activity was significantly lower in Rossmann fold KO lines than in WT plants after chitosan treatments. Expression of the LOX gene in Rossmann fold KO plants was significantly lower before and after chitosan treatment when compared with WT. Peroxidase activity assays together with gene expression analyses suggest that the Rossmann fold protein might be an important component of the signaling pathway leading to oxidative burst and basal expression of the LOX gene in P. patens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bryopsida , Quitosana , Lipoxigenase/genética , Quitosana/farmacologia , NAD , Bryopsida/genética , Peroxidases/genética , Peroxidase/genética , Peroxidase/metabolismo , Plantas/metabolismo
6.
Sci Rep ; 13(1): 11157, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429927

RESUMO

Drought tolerance is a complex trait in plants that involves different biochemical mechanisms. During two years of study (2019-2020), the responses of 64 arugula genotypes to drought stress were evaluated in a randomized complete block design with three replications under field conditions. Several metabolic traits were evaluated, i.e. relative water content, photosynthetic pigments (chlorophyll and carotenoids), proline, malondialdehyde, enzymatic antioxidants (catalase, ascorbate peroxidase, and peroxidase), total phenolic and flavonoid contents and seed yield. On average, the drought stress significantly increased the proline content (24%), catalase (42%), peroxidase (60%) and malondialdehyde activities (116%) over the two years of study. As a result of the drought stress, the seed yield (18%), relative water content (19.5%) and amount of photosynthetic pigments (chlorophyll and carotenoids) dropped significantly. However, the total phenolic and flavonoid contents showed no significant changes. Under drought stress, the highest seed yields were seen in the G50, G57, G54, G55 and G60 genotypes, while the lowest value was observed in the G16 genotype (94 g plant-1). According to the findings, when compared to the drought-sensitive genotypes, the drought-tolerant arugula genotypes were marked with higher levels of proline accumulation and antioxidant enzyme activity. Correlation analysis indicated the positive effects of peroxidase, catalase and proline on seed yield under drought conditions. These traits can be considered for the selection of drought-tolerant genotypes in breeding programs.


Assuntos
Aclimatação , Brassicaceae , Secas , Melhoramento Vegetal , Antioxidantes , Carotenoides , Catalase/genética , Clorofila , Corantes , Flavonoides , Malondialdeído , Peroxidase/genética , Peroxidases , Sementes/genética , Aclimatação/genética
7.
Exp Dermatol ; 32(9): 1557-1562, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37261383

RESUMO

Pathogenic variants in MPO, which encodes the myeloperoxidase, were reported as causative genetic defects in several cases of generalised pustular psoriasis (GPP) in addition to patients with myeloperoxidase deficiency in 2020. However, which clinical subtypes of GPP patients have pathogenic variants in MPO remains largely undetermined, and elucidating this is clinically important. The present report outlines a mild case of GPP with a rare missense heterozygous variant, c.1810C>T p.(Arg604Cys), in MPO. Our structural analysis and functional assays to measure myeloperoxidase activity suggest that the present MPO substitution is a hypomorphic variant in MPO. Thus, the mild phenotype of the present GPP patient might be associated with an incomplete hypomorphic loss-of-function variant in MPO. Additionally, the severe intractable edematous pustules and erythema improved dramatically after five rounds of granulocyte and monocyte adsorption apheresis (GMA) therapy. This is the first report of GMA treatment for GPP associated with a pathogenic variant in MPO, as far as we know. Our findings suggest that GMA might be a useful and powerful tool for controlling GPP in patients with myeloperoxidase deficiency.


Assuntos
Remoção de Componentes Sanguíneos , Psoríase , Dermatopatias Vesiculobolhosas , Humanos , Adsorção , Doença Crônica , Granulócitos/patologia , Interleucinas/genética , Monócitos , Peroxidase/genética , Psoríase/genética , Psoríase/terapia , Psoríase/patologia , Dermatopatias Vesiculobolhosas/terapia
8.
Food Chem ; 426: 136611, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356237

RESUMO

Herein, we proposed surface engineering of magnetic peroxidase mimic using bacteriophage by electrostatic interaction to prepare bacteriophage SapYZU15 modified Fe3O4 (SapYZU15@Fe3O4) for colorimetric determination of S. aureus in food. SapYZU15@Fe3O4 exhibits peroxidase-like activity, catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction. After introducing S. aureus, peroxidase-like activity of SapYZU15@Fe3O4 was specifically inhibited, resulting in deceleration of TMB chromogenic reaction. This phenomenon benefits from the presence of unique tail protein gene in the bacteriophage SapYZU15 genome, leading to a specific biological interaction between S. aureus and SapYZU15. On basis of this principle, SapYZU15@Fe3O4 can be employed for colorimetric determination of S. aureus with a limiting detection (LOD), calculated as low as 1.2 × 102 CFU mL-1. With this proposed method, colorimetric detection of S. aureus in food was successfully achieved. This portends that surface engineering of nanozymes using bacteriophage has great potential in the field of colorimetric detection of pathogenic bacterium in food.


Assuntos
Bacteriófagos , Peroxidase , Peroxidase/genética , Peroxidase/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Colorimetria/métodos , Peroxidases , Fenômenos Magnéticos , Peróxido de Hidrogênio
9.
Rheumatology (Oxford) ; 62(9): 3213-3218, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004177

RESUMO

OBJECTIVE: To identify and genetically characterize subgroups of patients with ANCA-associated vasculitides (AAV) based on sex and ANCA subtype. METHODS: A previously established SNP dataset derived from DNA sequencing of 1853 genes and genotyping of 1088 Scandinavian cases with AAV and 1589 controls was stratified for sex and ANCA subtype and analysed for association with five top AAV SNPs. rs9274619, a lead variant at the HLA-DQB1/HLA-DQA2 locus previously associated with AAV positive for myeloperoxidase (MPO)-ANCA, was analysed for association with the cumulative disease involvement of ten different organ systems. RESULTS: rs9274619 showed a significantly stronger association to MPO-ANCA-positive females than males [P = 2.0 × 10-4, OR = 2.3 (95% CI 1.5, 3.5)], whereas proteinase 3 (PR3)-ANCA-associated variants rs1042335, rs9277341 (HLA-DPB1/A1) and rs28929474 (SERPINA1) were equally associated with females and males with PR3-ANCA. In MPO-ANCA-positive cases, carriers of the rs9274619 risk allele were more prone to disease engagement of eyes [P = 0.021, OR = 11 (95% CI 2.2, 205)] but less prone to pulmonary involvement [P = 0.026, OR = 0.52 (95% CI 0.30, 0.92)]. Moreover, AAV with both MPO-ANCA and PR3-ANCA was associated with the PR3-ANCA lead SNP rs1042335 [P = 0.0015, OR = 0.091 (95% CI 0.0022, 0.55)] but not with rs9274619. CONCLUSIONS: Females and males with MPO-ANCA-positive AAV differ in genetic predisposition to disease, suggesting at least partially distinct disease mechanisms between the sexes. Double ANCA-positive AAV cases are genetically similar to PR3-ANCA-positive cases, providing clues to the clinical follow-up and treatment of these patients.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Feminino , Humanos , Masculino , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Mieloblastina/genética , Mieloblastina/imunologia , Peroxidase/genética , Peroxidase/imunologia , Caracteres Sexuais
10.
Front Immunol ; 14: 1119064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969218

RESUMO

Background: Disease relapse remains a major problem in the management of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). In European populations, HLA-DPB1*04:01 is associated with both susceptibility and relapse risk in proteinase 3-ANCA positive AAV. In a Japanese population, we previously reported an association between HLA-DRB1*09:01 and DQB1*03:03 with susceptibility to, and DRB1*13:02 with protection from, myeloperoxidase-ANCA positive AAV (MPO-AAV). Subsequently, the association of DQA1*03:02, which is in strong linkage disequilibrium with DRB1*09:01 and DQB1*03:03, with MPO-AAV susceptibility was reported in a Chinese population. However, an association between these alleles and risk of relapse has not yet been reported. Here, we examined whether HLA-class II is associated with the risk of relapse in MPO-AAV. Methods: First, the association of HLA-DQA1*03:02 with susceptibility to MPO-AAV and microscopic polyangiitis (MPA) and its relationship with previously reported DRB1*09:01 and DQB1*03:03 were examined in 440 Japanese patients and 779 healthy controls. Next, the association with risk of relapse was analyzed in 199 MPO-ANCA positive, PR3-ANCA negative patients enrolled in previously reported cohort studies on remission induction therapy. Uncorrected P values (Puncorr) were corrected for multiple comparisons in each analysis using the false discovery rate method. Results: The association of DQA1*03:02 with susceptibility to MPO-AAV and MPA was confirmed in a Japanese population (MPO-AAV: Puncorr=5.8x10-7, odds ratio [OR] 1.74, 95% confidence interval [CI] 1.40-2.16, MPA: Puncorr=1.1x10-5, OR 1.71, 95%CI 1.34-2.17). DQA1*03:02 was in strong linkage disequilibrium with DRB1*09:01 and DQB1*03:03, and the causal allele could not be determined using conditional logistic regression analysis. Relapse-free survival was shorter with nominal significance in carriers of DRB1*09:01 (Puncorr=0.049, Q=0.42, hazard ratio [HR]:1.87), DQA1*03:02 (Puncorr=0.020, Q=0.22, HR:2.11) and DQB1*03:03 (Puncorr=0.043, Q=0.48, HR:1.91) than in non-carriers in the log-rank test. Conversely, serine carriers at position 13 of HLA-DRß1 (HLA-DRß1_13S), including DRB1*13:02 carriers, showed longer relapse-free survival with nominal significance (Puncorr=0.010, Q=0.42, HR:0.31). By combining DQA1*03:02 and HLA-DRß1_13S, a significant difference was detected between groups with the highest and lowest risk for relapse (Puncorr=0.0055, Q=0.033, HR:4.02). Conclusion: HLA-class II is associated not only with susceptibility to MPO-AAV but also with risk of relapse in the Japanese population.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Poliangiite Microscópica , Humanos , Anticorpos Anticitoplasma de Neutrófilos , Peroxidase/genética , População do Leste Asiático , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Mieloblastina
11.
Appl Microbiol Biotechnol ; 107(7-8): 2303-2319, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843195

RESUMO

Il-MnP1, a short-type manganese peroxidase from Irpex lacteus F17, can oxidize some substrates in the absence of Mn2+, but the catalysis was much lower than in the presence of Mn2+. Here, we report a mutant R70V/E166A of Il-MnP1 with some unique properties, which possessed clearly higher catalysis for the decolorization of anthraquinone and azo dyes in the absence of Mn2+ than that of Il-MnP1. Importantly, the optimum pH of R70V/E166A for decolorization of anthraquinone dyes (Reactive Blue 19, RB19) was 6.5, and the mutant achieved high decolorization activities in the range of pH 4.0-7.0, whereas Il-MnP1 only showed decolorization for RB19 at pH 3.5-4.0. In addition, the optimum H2O2 concentration of R70V/E166A for RB19 decolorization was eight times that of Il-MnP1 and the H2O2 stability has improved 1.4 times compared with Il-MnP1. Furthermore, Mn2+ competitively inhibited the oxidation of RB19 by R70V/E166A, explaining the higher catalytic activity of the mutant R70V/E166A in the absence of Mn2+. Molecular docking results suggested that RB19 binds to the distal side of the heme plane in mutant R70V/E166A, which extended from the heme δ-side to the heme γ-side, and close to the mutated residues of R70V and E166A, whereas RB19 could not access the heme pocket of Il-MnP1 due to the steric hindrance of the side-chain group of Arg 70. Thus, this study constructed a useful mutant R70V/E166A and analyzed its higher Mn2+-independent activity, which is very important for better understanding the Mn2+-independent catalytic mechanism for short manganese peroxidases. KEY POINTS: • The mutant R70V/E166A of atypical MnP1 of I. lacteus F17 shows unique catalytic properties. • At pH 6.5, the R70V/E166A had a strong ability to decolorize anthraquinone dyes in the absence of Mn2+. • The binding sites of Reactive Blue 19 in mutant R70V/E166A were elucidated.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Simulação de Acoplamento Molecular , Peroxidases/genética , Peroxidases/metabolismo , Antraquinonas/metabolismo , Heme , Corantes/metabolismo , Peroxidase/genética , Peroxidase/metabolismo
12.
Front Immunol ; 14: 1124813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776890

RESUMO

Myeloperoxidase (MPO) is a cationic leukocyte haloperoxidase and together with other proteins, they possess activities against various microorganisms and are involved in extracellular trap (ET) formation. The present work describes the gene and deduced protein sequences, and functions of MPO in flounder (PoMPO). The PoMPO possesses a 2313 bp open reading frame (ORF) that encodes a protein of 770 amino acids. The highest PoMPO mRNA expression levels were found in the head kidney, followed by peritoneal cells, gill, spleen, skin, muscle, and liver. PoMPO was expressed in MHCII+ and GCSFR+ cells which indicated that PoMPO mainly is expressed in flounder macrophages and granulocytes. Bacterial lipopolysaccharide-stimulated peritoneal leukocytes showed an increased protein level of PoMPO while it seemed that LPS also promoted the migration of MPO+ cells from the head kidney into the peripheral blood and peritoneal cavity. After phorbol 12-myristate 13-acetate (PMA) or bacterial stimulation, flounder leukocytes produced typical ET structures containing DNA with decoration by MPO. The ETs containing DNA and PoMPO effectively inhibited the proliferation of ET-trapped bacteria. Blocking PoMPO with antibodies decreased the enzymatic activity, which attenuated the antibacterial activity of ETs. This study pinpoints the involvement of ETs in flounder innate responses to pathogens.


Assuntos
Anti-Infecciosos , Armadilhas Extracelulares , Linguado , Animais , Linguado/genética , Peroxidase/genética , Alinhamento de Sequência , Regulação da Expressão Gênica
14.
Environ Microbiol ; 25(2): 532-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495132

RESUMO

Catalase-peroxidase is a heme oxidoreductase widely distributed in bacteria and lower eukaryotes. In this study, we identified a catalase-peroxidase PiCP1 (PITG_05579) in Phytophthora infestans. PiCP1 had catalase/peroxidase and secretion activities and was highly expressed in sporangia and upregulated in response to oxidative and heat stresses. Compared with wild type, PiCP1-silenced transformants (STs) had decreased catalase activity, reduced oxidant stress resistance and damped cell wall integrity. In contrast, PiCP1-overexpression transformants (OTs) demonstrated increased tolerance to abiotic stresses and induced the upregulation of PR genes in the host salicylic acid pathway. The high concentration of PiCP1 can also induced callose deposition in plant tissue. Importantly, both STs and OTs have severely reduced sporangia formation and zoospore releasing rate, but the sporangia germination rate and type varied depending on environmental conditions. Comparative sequence analyses show that catalase-peroxidases are broadly distributed and highly conserved among soil-borne plant parasitic oomycetes, but not in freshwater-inhabiting or strictly plants-inhabiting oomycetes. In addition, we found that silencing PiCP1 downregulated the expression of PiCAT2. These results revealed the important roles of PiCP1 in abiotic stress resistance, pathogenicity and in regulating asexual structure development in response to environmental change. Our findings provide new insights into catalase-peroxidase functions in eukaryotic pathogens.


Assuntos
Phytophthora infestans , Phytophthora infestans/genética , Peroxidase/genética , Peroxidase/metabolismo , Catalase/genética , Catalase/metabolismo , Virulência , Estresse Fisiológico , Doenças das Plantas/microbiologia
15.
Nutr Metab Cardiovasc Dis ; 33(1): 210-218, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36411224

RESUMO

BACKGROUND AND AIMS: The causality between myeloperoxidase (MPO) and cardiovascular disease still remains unclear. We performed a two-sample Mendelian randomization (MR) study to estimate the potential causal effect of MPO on the risks of ischemic stroke, ischemic stroke subtypes, heart failure (HF), and atrial fibrillation (AF). METHODS AND RESULTS: Seventeen independent single-nucleotide polymorphisms associated with MPO levels were identified as instrumental variables from a European-descent genome-wide association study. Summary-level data on ischemic stroke originated from the Multiancestry Genome-wide Association Study of Stroke Consortium with 440 328 European individuals. We used the inverse-variance weighted method to assess the potential causality of plasma MPO with ischemic stroke and its subtypes in the main analysis. Genetically determined higher plasma MPO concentration was significantly associated with increased risks of ischemic stroke (odds ratio [OR] per standard deviation [SD] increase, 1.05; 95% confidence interval [CI], 1.02-1.09; P = 0.002) and cardioembolic stroke (CES) (OR per SD increase, 1.10; 95% CI, 1.03-1.18; P = 0.005), but was not associated with risks of large artery stroke or small vessel stroke. In the secondary analysis, MPO was associated with a high risk of HF (OR per SD increase, 1.05; 95% CI, 1.02-1.07; P = 0.001) and AF (OR per SD increase, 1.04; 95% CI, 1.01-1.07; P = 0.004). MR-Egger regression showed no directional pleiotropy for all associations, and the sensitivity analyses further confirmed these findings. CONCLUSION: High plasma MPO levels were potentially associated with increased risks of ischemic stroke, CES, HF, and AF, suggesting that MPO plays an important role in the development of cardiovascular disease.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla/métodos , Peroxidase/genética , Análise da Randomização Mendeliana , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Polimorfismo de Nucleotídeo Único
16.
Anim Sci J ; 93(1): e13779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345734

RESUMO

Preventing feather pecking (FP) in adult laying hens is important for the welfare of intensively poultry farming. Fear-related behavior in growing female layer chicks may predict FP in adult hens. In this study, in two representative laying breeds (White Leghorn [WL] and Rhode Island Red [RIR]) that have different FP frequencies, we identified a candidate gene associated with fear-related behavior in chicks and FP in adult hens. In the tonic immobility test and open-field test, the behavioral activity was lower in WL chicks than in RIR chicks (P < 0.01), suggesting that WL chicks were more fearful than RIR chicks. Based on previous studies, 51 genes that have been found to be differentially expressed in the brain between high- and low-FP populations were chosen, and their expression levels were screened in the chick diencephalon. This analysis revealed that myeloperoxidase (MPO) gene expression level was higher in WL chicks than that in RIR chicks (P < 0.05). Furthermore, STRING analysis predicted the gene network including MPO and MPO-related genes and revealed the association of these genes with fear-related behavior. These results suggest that MPO is potentially associated with fear-related behavior in growing female layer chicks and FP in adult hens.


Assuntos
Galinhas , Peroxidase , Animais , Feminino , Galinhas/genética , Galinhas/metabolismo , Peroxidase/genética , Plumas , Medo , Comportamento Animal , Diencéfalo/metabolismo
17.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125911

RESUMO

BackgroundAntineutrophil cytoplasmic autoantibody-associated (ANCA-associated) vasculitidies (AAV) are life-threatening systemic autoimmune conditions. ANCAs directed against proteinase 3 (PR3) or myeloperoxidase (MPO) bind their cell surface-presented antigen, activate neutrophils, and cause vasculitis. An imbalance between PR3 and its major inhibitor α1-antitrypsin (AAT) was proposed to underlie PR3- but not MPO-AAV. We measured AAT and PR3 in healthy individuals and patients with AAV and studied protective AAT effects pertaining to PR3- and MPO-ANCA.MethodsPlasma and blood neutrophils were assessed for PR3 and AAT. WT, mutant, and oxidation-resistant AAT species were produced to characterize AAT-PR3 interactions by flow cytometry, immunoblotting, fluorescence resonance energy transfer assays, and surface plasmon resonance measurements. Neutrophil activation was measured using the ferricytochrome C assay and AAT methionine-oxidation by Parallel Reaction Monitoring.ResultsWe found significantly increased PR3 and AAT pools in patients with both PR3- and MPO-AAV; however, only in PR3-AAV did the PR3 pool correlate with the ANCA titer, inflammatory response, and disease severity. Mechanistically, AAT prevented PR3 from binding to CD177, thereby reducing neutrophil surface antigen for ligation by PR3-ANCA. Active patients with PR3-AAV showed critical methionine-oxidation in plasma AAT that was recapitulated by ANCA-activated neutrophils. The protective PR3-related AAT effects were compromised by methionine-oxidation in the AAT reactive center loop but preserved when 2 critical methionines were substituted with valine and leucine.ConclusionPathogenic differences between PR3- and MPO-AAV are related to AAT regulation of membrane-PR3, attenuating neutrophil activation by PR3-ANCA rather than MPO-ANCA. Oxidation-resistant AAT could serve as adjunctive therapy in PR3-AAV.FUNDINGThis work was supported by KE 576/10-1 from the Deutsche Forschungsgemeinschaft, SCHR 771/8-1 from the Deutsche Forschungsgemeinschaft, grant 394046635 - SFB 1365 from the Deutsche Forschungsgemeinschaft, and ECRC grants.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Arterite de Células Gigantes , Síndrome de Linfonodos Mucocutâneos , alfa 1-Antitripsina , Humanos , Anticorpos Anticitoplasma de Neutrófilos , Metionina/metabolismo , Mieloblastina/genética , Ativação de Neutrófilo , Peroxidase/genética , Peroxidase/metabolismo , alfa 1-Antitripsina/metabolismo
18.
Nat Rev Rheumatol ; 18(10): 559-574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109667

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA), that share features of pauci-immune small-vessel vasculitis and the positivity of ANCA targeting proteinase-3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). AAV syndromes are rare, complex diseases and their aetio-pathogenesis is mainly driven by the interaction between environmental and genetic factors. In patients with GPA and MPA, the genetic associations are stronger with ANCA specificity (PR3- versus MPO-ANCA) than with the clinical diagnosis, which, in keeping with the known clinical and prognostic differences between PR3-ANCA-positive and MPO-ANCA-positive patients, supports an ANCA-based re-classification of these disorders. EGPA is also made up of genetically distinct subsets, which can be stratified on ANCA-status (MPO ANCA-positive versus ANCA-negative); these subsets differ in clinical phenotype and possibly in their response to treatment. Interestingly, MPO-ANCA-positive patients with either MPA or EGPA have overlapping genetic determinants, thus strengthening the concept that this EGPA subset is closely related to the other AAV syndromes. The genetics of AAV provides us with essential information to understand its varied phenotype. This Review discusses the main findings of genetic association studies in AAV, their pathogenic implications and their potential effect on classification, management and prognosis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Síndrome de Churg-Strauss , Granulomatose com Poliangiite , Poliangiite Microscópica , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Anticorpos Anticitoplasma de Neutrófilos , Síndrome de Churg-Strauss/diagnóstico , Síndrome de Churg-Strauss/genética , Humanos , Mieloblastina/genética , Peroxidase/genética
19.
Genes (Basel) ; 13(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36011324

RESUMO

Myeloperoxidase (MPO) is a heme peroxidase with microbicidal properties. MPO plays a role in the host's innate immunity by producing reactive oxygen species inside the cell against foreign organisms. However, there is little functional evidence linking missense mutations to human diseases. We utilized in silico saturation mutagenesis to generate and analyze the effects of 10,811 potential missense mutations on MPO stability. Our results showed that ~71% of the potential missense mutations destabilize MPO, and ~8% stabilize the MPO protein. We showed that G402W, G402Y, G361W, G402F, and G655Y would have the highest destabilizing effect on MPO. Meanwhile, D264L, G501M, D264H, D264M, and G501L have the highest stabilization effect on the MPO protein. Our computational tool prediction showed the destabilizing effects in 13 out of 14 MPO missense mutations that cause diseases in humans. We also analyzed putative post-translational modification (PTM) sites on the MPO protein and mapped the PTM sites to disease-associated missense mutations for further analysis. Our analysis showed that R327H associated with frontotemporal dementia and R548W causing generalized pustular psoriasis are near these PTM sites. Our results will aid further research into MPO as a biomarker for human complex diseases and a candidate for drug target discovery.


Assuntos
Mutação de Sentido Incorreto , Peroxidase/genética , Humanos , Mutagênese , Neutrófilos/metabolismo , Peroxidase/metabolismo , Estabilidade Proteica
20.
Nat Plants ; 8(7): 828-839, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35851622

RESUMO

At present, a cooperative process hypothesis is used to explain the supply of enzyme (class III peroxidases and/or laccases) and substrates during lignin polymerization. However, it remains elusive how xylem cells meet the needs of early lignin rapid polymerization during secondary cell wall formation. Here we provide evidence that a mitochondrial ascorbate peroxidase (PtomtAPX) is responsible for autonomous lignification during the earliest stage of secondary cell wall formation in Populus tomentosa. PtomtAPX was relocated to cell walls undergoing programmed cell death and catalysed lignin polymerization in vitro. Aberrant phenotypes were caused by altered PtomtAPX expression levels in P. tomentosa. These results reveal that PtomtAPX is crucial for catalysing lignin polymerization during the early stages of secondary cell wall formation and xylem development, and describe how xylem cells provide autonomous enzymes needed for lignin polymerization during rapid formation of the secondary cell wall by coupling with the programmed cell death process.


Assuntos
Populus , Regulação da Expressão Gênica de Plantas , Lignina , Peroxidase/genética , Peroxidase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...